National Repository of Grey Literature 4 records found  Search took 0.00 seconds. 
Formation of blastema during limb regeneration in Amphibia
Paušlyová, Lucia ; Tlapáková, Tereza (advisor) ; Paňková, Daniela (referee)
Total limb regeneration among vertebrates is basically restricted to some amphibians. Urodeles have the ability to regenerate amputated limbs through their life span. Anurans have the ability of complete regeneration of amputated limbs only in their larval stage. The key process of the limb regeneration is the formation of undifferentiated cell group which is called blastema. There are many cell types that contribute to formation of the blastema while the most important part in this process belongs to the skeleton muscle tissue and dermal fibroblasts. Another critical factor in formation of the blastema and its growth are the nerves in the area of wound and neurotrophic factors produced by them. In the last 20 years it has been great improvement in using different markers for tracking the fate of blastema cells.
Molecular mechanisms of vertebrate limb regeneration
Onhajzer, Jakub ; Krylov, Vladimír (advisor) ; Soukup, Vladimír (referee)
Limb regeneration fascinates innumerable scientists for decades. Urodele amphibians can regenerate their limbs perfectly. This ability is preserved for a whole lifetime. However, they are not the only ones who regenerate their limbs. Second species are anuran amphibians, but their ability to promote limb regeneration take place only throughout a larval stage. Both groups belong to amphibians. Limbs are regeneated by the process called epimorphosis. The primary process is formation of blastema, mass of heterogeneous dedifferetiated cells, which are unipotent with the capacity to redifferentiate into only one cell type. Essential factor is the regulation of limb regeneration by numerous molecular mechanisms in order to achieve the perfect limb shape, without unwanted tumors. Mechanisms allowing limb regeneration in lower vertebrates would be applied via regenerative medicine in higher vertebrates in the future. Keywords: regeneration, limb, epimorphosis, dedifferentiation, vertebrates
Molecular mechanisms of vertebrate limb regeneration
Onhajzer, Jakub ; Krylov, Vladimír (advisor) ; Soukup, Vladimír (referee)
Limb regeneration fascinates innumerable scientists for decades. Urodele amphibians can regenerate their limbs perfectly. This ability is preserved for a whole lifetime. However, they are not the only ones who regenerate their limbs. Second species are anuran amphibians, but their ability to promote limb regeneration take place only throughout a larval stage. Both groups belong to amphibians. Limbs are regeneated by the process called epimorphosis. The primary process is formation of blastema, mass of heterogeneous dedifferetiated cells, which are unipotent with the capacity to redifferentiate into only one cell type. Essential factor is the regulation of limb regeneration by numerous molecular mechanisms in order to achieve the perfect limb shape, without unwanted tumors. Mechanisms allowing limb regeneration in lower vertebrates would be applied via regenerative medicine in higher vertebrates in the future. Keywords: regeneration, limb, epimorphosis, dedifferentiation, vertebrates
Formation of blastema during limb regeneration in Amphibia
Paušlyová, Lucia ; Tlapáková, Tereza (advisor) ; Paňková, Daniela (referee)
Total limb regeneration among vertebrates is basically restricted to some amphibians. Urodeles have the ability to regenerate amputated limbs through their life span. Anurans have the ability of complete regeneration of amputated limbs only in their larval stage. The key process of the limb regeneration is the formation of undifferentiated cell group which is called blastema. There are many cell types that contribute to formation of the blastema while the most important part in this process belongs to the skeleton muscle tissue and dermal fibroblasts. Another critical factor in formation of the blastema and its growth are the nerves in the area of wound and neurotrophic factors produced by them. In the last 20 years it has been great improvement in using different markers for tracking the fate of blastema cells.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.